Category Archives: Datacenter

Disaster Recovery Strategy for the 21st Century

Blade servers, virtualization, solid state disks, and 16Gbps fibre channel – it’s challenging to keep up with today’s advanced technology.  The complexity and sophistication of emerging products can be dizzying.  In most cases we’ve learned how to cope with these changes, but there are a few areas where we still cling to vestiges of the past.  One of these relics of past decades is the impenetrable, monolithic data center.

The data center traces its roots back to the mainframe, when all computing resources were housed in a single, highly specialized facility designed specifically to support processing operations.  Since there was little or no effort to classify data, these bastions of data processing were over-designed to ensure the most critical requirements were supported.  This model was well-suited for mainframes and centralized computing, but it falls well short of meeting the needs of our modern IT environments.

Traditional data center facilities provide a one-size-fits-all solution.  At an average $700 to $1500 per square foot, they are expensive to build.  They lack the scalability and flexibility to respond to dynamic market changes and shifts in technology.  Since these require massive investments of capital, they must be built not only to contain today’s IT equipment, but also satisfy growth requirements for 25-years or more.  The end result is a tremendous waste of capacity, corporate funds tied up for decades, making assumptions about the direction and needs of future IT technology, the build-out of a one-size-fits-all facility, and a price tag that makes disaster recovery redundancy well beyond the reach of most companies.

An excellent solution to this problem is already a proven technology – the Portable Modular Data Center.  These are typically self-contained data center modules that contain a comprehensive set of power, cooling, security, and internal infrastructure to support a dozen or more equipment racks per module with up to 30kW of power per rack.  These units are relatively inexpensive, highly scalable, simple to deploy, energy efficient (Green), and factory constructed to ensure consistent quality and reproducible technology.  As modules, they can be deployed incrementally as requirements dictate, avoiding major one-time capital expenditures for facilities.

Their inherent modularity and scalability make them an excellent choice for incrementally building out finely-tuned disaster recovery facilities.  Here is an example of how modular data centers can be leveraged to cost-effectively provide Disaster Recovery protection of an organization’s data assets.

      1. Mission Critical Operations (typically 10% to 15%)
        These are applications and data that might severely cripple the organization if they were not available for any significant period of time.
        Strategy – Deploy synchronous replication technology to maintain an up-to-date mirror image of the data that could be brought to operational status within a matter of minutes.
        Solution – Deploy one or more Portable Module Data Center units within 30-miles (to minimize latency) and run synchronous replication between the primary data center and the modular facility. Since 20-30 miles of separation would protect from a local disaster, but not a region-wide event, it might be worthwhile to replicate asynchronously from the modular data center to some remote (out-of-region) location.  A small amount of data might be lost in the event of a disaster (due to asynchronous delay), but processing could still be brought back on-line quickly with minimal loss of data and only a limited interruption to operations.
      2. Vital Operations (typically 20% to 25%)
        These applications and data are very important to the organization, but an outage of several hours would not financially cripple the business.
        Strategy – Deploy an asynchronous replication mechanism outside the region to ensure an almost-up-to-date copy of data is available for rapid recovery.
        Solution – Deploy one or more Portable Module Data Center units anywhere in the country and run asynchronous replication between the primary data center and the remote modular facility.  Since distance is not a limiting factor for asynchronous replication, the modular facility could be installed anywhere.  This protects from disasters occurring not only locally, but within the region as well.  A small amount of data might be lost in the event of a disaster (due to asynchronous delay), but applications and databases could still be recovered quickly with minimal loss of data and only a limited interruption to operations.
      3. Sensitive Operations (typically 20% to 30%)
        These applications and data are important to the organization, but an outage of several days to one week would have only a negligible financial impact on the business.
        Strategy – (same as above) Use the same asynchronous replication mechanism outside the region to ensure an almost-up-to-date copy of data is available for rapid recovery.
        Solution – Add one or more Portable Module Data Center units to the above facility (as required) and run asynchronous replication between the primary data center and the remote modular facility.
      4. Non-Critical Operations (typically 40% or more)These applications and data are incidental to the organization and can be recovered when time is available.  An outage of several weeks would have little impact on the business.
        Strategy – (same as above) Use the same asynchronous replication mechanism outside the region to ensure an almost-up-to-date copy of data is available for rapid recovery.
        Solution – Deploy one or more Portable Module Data Center units anywhere in the country and run asynchronous replication between the primary data center and a remote modular facility.
        Note:  Since non-critical applications and data tend to be passive, non-critical operations might also be a viable candidate for transitioning to an Infrastructure-as-a-Service (IaaS) provider.

Modular Data Centers are the obvious enabler for the above Disaster Recovery strategy.  They allow you to deploy only the data center resource you need, when you need it.  They are less expensive than either leased or build facilities, and can be scaled as required by the business.

It’s time for the IT industry to abandon their outdated concepts of what a data center should be and focus on what is needed by each class of data.  The day of raised-floor mainframe “bunkers” has passed.  It’s time to start managing data center resource deployment as carefully as we manage server and storage deployment.  Portable Modular Data Centers allow you to implement efficient, cost-effective IT production facilities in a logical sequence, without breaking the bank in the process.

Modular Datacenter Units – The End of Traditional Enterprise Datacenters?

Traditional brick and mortar datacenters have been a mainstay of enterprise computing since the day of the mainframe.  IT systems were kept in isolation in windowless, highly secure facilities that provided a constant temperature and humidity environment on a 7×24 basis.  Although the cost of building new datacenters continues to increase substantially, until now relatively few options have been available.

However, with the development of the portable modular datacenter, the day of the traditional datacenter may be coming to an end.  While there are several variations on the market, the most promising appears to be the completely built out facility. New datacenter modules are built from ISO standard shipping containers. They incorporate chillers, power and communications buses, forced air cooling, equipment racks, and all other components necessary for a modern datacenter. These units can be trucked to any location, moved into position on a concrete pad, connected to external resources, and be ready for systems build-out on short notice.  They can be configured to operate as a singular unit, multiple units, and even as stacked arrays of modular datacenter units.

In addition to serving as a modular replacement for traditional brick-and-mortar datacenter s, there are other possibilities for Portable Modular Datacenter s:

RAPID DEPLOYMENT MODULES – For situations where rapid implementation is a key driver, or when companies simply can’t wait the 18-24 months for a new datacenter build-out.

COST CONTAINMENT – Situations where minimizing the cost for building a new datacenter facility is a primary objective

DISASTER RECOVERY – A highly flexible, cost-effective IT environment that can be deployed remotely for a Disaster Recovery solution

CAPACITY-ON-DEMAND –Modular, self-contained units that permit companies to add new datacenter capacity only-as-required (Capacity-as-a-Service?)

TEMPORARY FACILITIES – Allows companies to continue to support ongoing IT operations while a permanent datacenter facility is built

SEGREGATED SYSTEMS – Enables complete isolation of specific IT operation in an otherwise shared environment (Community Cloud?)

DYNAMIC MARKETS – A solution for highly volatile markets where future capacity requirements are difficult to predict

EMERGENCY CAPACITY – Available for relatively rapid deployment when an organization’s primary datacenter runs out of floor space

SYNCRONOUS REPLICATION – Allows the implementation of a small nearby replication site within 40KM of the primary datacenter to support replication while maintaining database consistency

MOBILE SYSTEMS – A portable IT solution that could be relocated to a different region in response to changing corporate needs or an impending disaster (such as a major hurricane).

PREFABRICATED SUB-SYSTEMS – A transportable platform for high growth companies who must buy integrated sub-systems from an external vendor, rather than building the equipment themselves.

REPURPOSING OF BUILDINGS – Modular units may be installed within existing building that are sitting idle, as long as adequate resources (power and communications) are available.

Anotherbig  benefit to portable mobile datacenter units is that they’re built in a factory to exact specification.  As such, they benefit from repetitive manufacturing processes and ongoing quality assurance reviews.  Each module features the same level of quality and reliability as its peers.  This is in sharp contrast to traditional brick-and-mortar datacenters, which are normally built as one-off custom configurations.

The concept of portable mobile datacenter units is pretty clever.   If there are any downsides to this technology they are not readily apparent. Although this represents a relatively new approach, it appears to be distinctly superior to what’s been done in the past.  Don’t be surprised to see a new modular datacenter unit being installed on a concrete pad near you in the foreseeable future.

Datacenter Optimization? It’s a Target-Rich Environment!

We’re struggling back from the depths of recession, but IT budgets remain tight.  The business community is demanding an ever-increasing amount of functionality from the datacenter.  Managing IT today is an exercise in being-between-a-rock-and-a-hard-place.

 However in the midst of this seemingly impossible situation, there are bright spots.  Most datacenters are a veritable treasure-trove of opportunity for efficiency improvements.  Some examples include:

  • Typically over 90% of all data sitting on active disk has not been accessed in over 6-months.
  • An average physical server (non-virtualized) is less than 30% utilized.
  • Floor-space for a 42U equipment rack costs around $3000 per month (or $36,000 per year, per rack).  That equate to over $850 per U (1.75 inches), per year!
  • Replacing rack servers with blade servers can reduce the amount of rack space by at least 36% (typically much more).
  • According to Intel, upgrading servers to newer, more powerful systems can yield a consolidation ratio of between 4:1 and 7:1.
  • Standardizing on 45U high equipment racks, rather than 42U racks will reduce your datacenter foot print by (1) rack for every (14) equipment racks installed.
  • The purchase price for multi-tiered storage equipment is normally 25% – 35% less than traditional storage arrays.
  • Replacing boot disks with boot-from-SAN technology may eliminate literally hundreds of underutilized disks, along with the power and cooling they require.
  • 2.5 inch disk drives need 40% less energy (and cooling) than a 3.5 inch disk drive equivalent of the same capacity.
  • In a properly managed environment, LTO tape media will store seldom-used data for up to 30-years with a 99.999% recovery rate – at under $.03 per GB!
  • A well-designed SAN topology can lower the fibre channel port cost from $1800-per-port to around $300-per-port (an 80%+ reduction in cost)!
  • Well-designed and properly delivered IT training can increase productivity by 17% – 21% per FTE.

So where to start?  The quickest way is to perform a high-level assessment of the datacenter to identify the most promising opportunities.  This can be done by internal personnel, but it is a task most effectively done by an outside IT consulting firm that specializes in datacenter optimization.  They can devote the time necessary to promptly complete the task, and are not biased by day-to-day familiarity with the equipment that may mask issues.  Additionally, an professional datacenter consultant can deliver an industry-wide perspective, suggest best practices, and offer out-of-the-box thinking that is not influenced by an organization’s current culture.

Once all areas for improvement have been exposed and documented, the data should be transitioned into the architectural development and planning cycle to ensure any changes will not adversely impact other areas of operation, and are executed on a manageable and sustainable timeline.

 Unfortunately there is no “magic cure” for a difficult economy or anemic IT budgets.  However, most datacenters offer more than enough opportunity to enable you to shave 20% to 30% off the operating budget.